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» ATLAS needs lots of simulation

« Simulation is paramount for SM and background modeling
In most analyses, as well as general detector and upgrade

studies

* A significant issue in Run-2 was the lack of MC-based
statistics, and will only worsen in Run-3 and beyond without

faster production

» A very large fraction of the simulation’s
computational budget is spent by the
LAr Calorimeter

- Parametrized simulation can speed things
up enormously: FastCaloSim

» FastCaloSim is small, self contained, few
dependencies, already had a CUDA port

Quick Motivation: Why FastCaloSim?
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il CPU Code Profiling
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» LAr Calorimeter has massive inherent parallelism — lots of independent cells and
associated tasks.

> Profiling studies identified
likely hotspots that are
paralellizable

> TFCSLateralShapeParametrizationHitChain::simulate() is the
most significant routine except

> CUDA kernels created o e ] [
to run these parts on the .
GPU
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)| GPU Validation

» CUDA has a very good random number generator (CURAND)
 FCS needs lots of random numbers

¢ 3 per hit X ~5k hits per event Energy: sample=2, electron, E=65536 MeV, 0.20<[n|<0.25, all pca Energy: sample=2, electron, E=65536 MeV, 0.20<[n|<0.25, all pca
. i " el o ol o =
much fa,ster th.an.generatlng on CPU " @Qﬂ*ﬂ% ] = ﬁ#ﬂjﬁ 1
 but can’t do bitwise comparisons N3 Y& i e ha
with CPU — only statistical ot i e | b s
150:— + 150?— +* 1
1001~ ﬁﬁj HﬁJr 100/~ 4 *#Jf ﬁﬁ;
- after looking at lots of histograms, o & **H% o o )
T . C #* E r H
results look statistically equivalent R T A S YR e " — .

» |f we sacrifice speed, we can generate random number on CPU, and transfer them to
GPU, using these for all calculations on GPU

« compared the results of 62 million hits in the Electron 64 GeV run

 found only 2 hits calculations that ended up in different calorimeter cell
» slightly different float rounding policies on CPU/GPU

* if we use double precision variables for certain calculations, difference vanishes

@ Confident that GPU code does the same thing as CPU




Sl CUDA Performance Studies
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» |/O to read/unpack
parametrization files is
expensive: ~15s of 30s

» Execution only offloaded
if >500 hits, otherwise
CPU is faster

» GPU kernels very short
 launch latency limited

» Better performance if
group work between
multiple events to give
more work to GPU
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Sl CUDA Performance Studies
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» |/O to read/unpack
parametrization files is
expensive: ~15s of 30s

» Execution only offloaded
if >500 hits, otherwise
CPU is faster

» GPU kernels very short
 launch latency limited

» Better performance if
group work between
multiple events to give
more work to GPU

Speedup over CPU event loop time

FastCaloSim Speedup Over CPU (Event Loop)
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Grouped work

not as effective

since regular GPU

IS already performant

* need to send
extra information
to GPU when work
IS grouped
between events

CUDA Performance Studies

» GPU performs better for higher energy particles (more hits/work)

Speedup over CPU
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ol GPU Usage With CUDA

> |n general, GPU resources are not well used
» kernels are very short, dominated by launch latency overheads
« work size is small, under-utilizing available GPU cores

FastCaloSim Scaling With Multiple Concurrent Processes
4

=il CpU total
=g CpU event loop
2 gpu total

g 2 gpU event loop
=P ) gpus total group
2 gpus event loop group

» Can run multiple concurrent process all
sharing one (or more) GPUs

* use nvidia-cuda-mps-server to share 2
P100s between up to 32 processes

Normalized Time to 1 Process

* curve is mostly flat — nowhere near maxing
out GPU resources
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Number of processes

* we can do the same with a V100 w/ 48GB
and run 62 processes with little impact
on performance
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Porting to Kokkos

Build infrastructure
« Kokkos has decent CMake integration

* requires separate binaries for each device backend (CUDA, HIP, Intel) or host parallel
(pThread, OpenMP)

* In theory you can run both device/host parallel backends in same code, but then you can’t
use the default execution space for your kernels: have to say which go where

Shared libraries not compatible with device symbol relocation

* if you want shared libs, all symbols in a kernel must be visible to one compilation unit
« wrap kernels in one file that does a bunch of #include
» needed to do some function/file refactoring to make it all work

CUDA backend interoperable with pure CUDA
 can call CUDA functions from Kokkos kernels
* makes incremental porting and validation much easier

All offloaded data structures need to be converted to Kokkos Views
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Kokkos: Porting Data Structures

Kokkos Views can either allocate host/device memory, or wrap existing pointers
- makes incremental porting of cuMalloc memory easier

Supports both row and column major ordering

Jagged multidimensional arrays not well supported by Kokkos Views
* Views of Views not meant for this

* |ots of extra boilerplate needed to make work

- easier to flatten to 1D array, or pad to 2D

Requires explicit Host «» Device memory migration
* need to create Views on host to hold copied information

Non-zero overhead to using Views
* both in the extra steps for creating the host/device Views, and operations on them
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ol Kokkos: Porting Kernel Code

» While syntax is different from CUDA, concepts are the same
 functions — lambdas

 parallel_for, parallel _scan, reductions
- some CUDA features not available in Kokkos (yet?). See Patatrack

- atomics (but not between devices or host/device parallel execution spaces)

» Most FCS functions identical between CUDA / Kokkos
* use a single file with #ifdef to select attributes to share as much code between version

( )

#ifdef USE KOKKOS

# 1include <Kokkos Core.hpp>

# 1include <Kokkos Random.hpp>

# define DEVICE  KOKKOS INLINE FUNCTION
#else

# define DEVICE = device

#endif
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i Kokkos: Performance
» EXxercise various backends, compare to original CUDA

« CUDA reference is NVidia 2080

 HIP on AMD GPU (Vega56) FastCaloSim Kokkos Kernel Timing Relative To CUDA
- Intel XeLP GPU via OpenMP target ® .
offload, but | can’t show that... 35 aHp
 pThread / OpenMP best performance |5 o
with ~15 threads/procs E ) " Openti?
- HIP?is a pure HIP port, run on % = Original CPU
AMD GPU g
» Kokkos does not handle GPU ; 0
memory initialization efficiently 5.
» Kokkos kernel launch penalties 0 _ =
WOI"SG than CUDA reset simulate reduce copy d-h event loop
» AMD Vegabd6 has horrible launch latencies Kokkos
» HIP/AMD uses the CPU a lot more than CUDA when CPUFreq CUDA CUDA  HIP  Hip?
executing kernels on GPU 2200 MHz 20 Bua] L2 8
_ 3700 MHz 3.4 5.3 60 30
» Code was ported from CUDA, not rewritten cemel launch latencies / 1S

* likely considerable optimization possible
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SYCL Build Infrastructure

» Multiple different flavours of dpcpp/SYCL
* Intel official “beta” releases
Intel closed codedrops at jlse for A21 development
* OpenCL and LevelZero backends

Intel/llvm git
- CUDA backend available (selectable at compile time)
 RNG issues (See Vince's talk later)

Codeplay

hipSYCL (AMD), triSYCL

» |In theory SYCL is single source, compile once, run anywhere, select backend at
runtime

* in practice need to build with different compilers to target different hardware
* maybe there will be convergence in the future

> Integrates well with CMake




~

2, SYCL Code Modifications

#ifdef SYCL_TARGET_CUDA Custom Selector' SeleCt deVlceS 77 Copyright (C) 2002-2020 CERN for the benefit of the ATLAS collaboration
ClaSS_CUDASEIECtor i publl{: ek :SyC1: :dEV1ce_591eCt0r { (targetable Soon! : ) based On driver // Storage of passive simulation data used during on-device simulation.
public: A . // These properties are set by different class objects before being transferred
int operator()(const cl::sycl::device& device) const override { |nformat|on. /7 to the SYCL device for processing.
const std::string device_vendor = device.get_info<device: :vendor>(); #ifndef FASTCALOSYCL SYCLCOMMON_PROPS._H_
const std::string device_driver = #define FASTCALOSYCL_SYCLCOMMON_PROPS_H_

device.get_info<cl::sycl::info: :device: :driver_version>(); #include <SyclCommon/Histo.h>

if (device.is gpu() && namespace fastcalosycl::syclcommon {

(device_vendor.find("NVIDIA") != std::string::npos) && static const unsigned int kMinHits = 1000;

(device_driver.find("CUDA") = std::string:inpos)) { il sl i sl ou
}.return 1 Context_sharing: When you Create multiple static const unsigned int kMaxUniqueHits = 2000;
r . struct CellProps {

: return -1; queues, even frO[n the Sta?e dtht_lce, 2 E g o Lo Simplified data structures: In addition to
i ne"‘;]conteXt gets crea"e ?a(cj; Ime. AS ) virtual function calls, function pointers,
endit such, any buf fer (or allocated memory) e s .| exceptions, ..., the SYCL 2020 spec. does

// Initialize device, queue and context Created from a glvel’l COﬂteXt W|” be bound int pdgId; ) not Support non_standard_layout types

o e i to that context (c.f. CUDA contexts). ' I

Initialize deVlCe, queue and context

if(veti) f
dev = fastcalosycl::syclcommon::GetTargetDevice();
// dev = cl::sycl::device(cl::sycl::default_selector());

NGRS The DPC++ toolchain has undergone numerous improvements,
¥ ates { and useful extensions were added, over the past year -- this is

dev = ctx_->get_devices()[0];

A eV ayeLEqUiis( et Bav); reflected by the new 429-page SYCL 2020 specification (c.f. the
274-page 1.2.1 specification). In particular, Unified Shared
Memory (USM) was only a proposal about 6 months ago and is

now part of the 2020 specificification, as well as support for
e e floating-point type atomic operations, leading to faster and
oM EaIgt. SRR easier development (not so many private builds of intel/llvm).

}

class SimResetKernel {
public:
SimResetKernel() = delete;
SimResetKernel(syclcommon::SimProps* props)
: num_cells_(props->num_cells), num_unique_hits_(nullptr) {

}
void operator()(cl::sycl::nd_item<i> item) const { .
unsigned int wid = item.get global linear_id(); D CMakelLists.txt
if (wid < num_cells_) {
cells_energy_[wid] = 0.0; D GeoRegion_test.Cxx
h o Kernel function objects: Callables that are
“num_unique_hits_ = o; instantiated within a command group Unit tests: Validation of host and device D Geo_testox
} H H . .
. handler, and called directly via geometries, ensure reproducible random [ Histo test.cxx
e single_task, parallel for, etc. for numbers produced on different devices
const unsigned long num_cells_; ‘lfernelulnvocatlon (Cf ertlng Iambda D SimEVEnt_test.CXX
int* num_unique_hits_; |nl|ne )
float* cells_energy_; SimHitRng_test.cxx
9 | D g_|
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i) SYCL Performance

» Timing tests on an integrated Intel GPU (Iris Pro P580) w/ public dpcpp beta10 release
» d—nh transfer speeds are RAM—RAM so don’t count

FastCaloSim Kernel Timing Relative To CUDA
40
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Lessons Learned

Build configuration requirements may be challenging
- Kokkos shared libs vs relocatable device code: code reorganization
 dpcpp changing to (too?) rapidly, things that worked last week may not work today

Separate binaries for different device backends

» Kokkos explicitly, SYCL because you need different compiler flavours
 implications for production code distribution

CUDA— Portability Layer concepts translate well

* Views / Buffers come with overhead / penalties

Launch latencies for tiny kernels kills performance on all platforms

 Portability layers make it worse
* AMD is really bad. Will RDNA2 / CDNA2 / Instinct improve things?

High performance single source CPU/GPU may be a pipe dream

GPU very underutilized in FastCaloSim
» grouping data between events helps: may require significant refactoring of frameworks
 a single GPU can be shared between multiple processes
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What Recommendations Would | Make Today?

Caveats:
* non-NVidia/CUDA market very fast moving target

Are you buying hardware for you trigger farm today?

- NVidia / CUDA

Is short term performance the main metric?

* NVidia / CUDA

Is short term performance important, but not ultimate, and want some portability?
» Kokkos

Do you want to target mainly Intel and NVidia GPU hardware?

« SYCL

Long term portability on all platforms

» Kokkos

Non-NVidia software/hardware changing very rapidly: these answers may be
different in six months.



What Comes Next

» Other Parallel Portability Layers:
* OpenMP / OpenACC
* Alpaka
» Raja - Will we learn anything that Kokkos didn’t teach us?

» Other backends
« SYCL w/ CUDA on NVidia

* Intel discrete GPU (Arctic Sound/XeHP and Ponte Vecchio/XeHPC via Kokkos and SYCL)
« we can already run FCS/SYCL on XeLP, XeHP nodes at jlse

- AMD RDNAZ2 / CDNAZ2

» Better understanding/evaluation/reporting of metrics
* in coordination with other testbeds

» Update FastCaloSim to reflect what ATLAS is currently using
* more realistic particle scenarios
o) integrate into ATLAS repositories
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